Sari la conținut
Forum Roportal
zod

Venus - terraformare și colonizare

Evaluează acest topic

Postări Recomandate

Terraformarea planetei Venus s-ar putea face destul de usor in doua etape:

 

Prima etapa ar cuprinde generarea unor micro-sfere flotante, transparente dar izolatoare termic in atmosfera inalta care ar accelera efectul de sera pana la +800C, temperatura la care CO2 ar disocia in grafit care s-ar depune la sol si oxigen, pana s-ar atinge 20% oxigen la presiunea de 1 bar similar atmosferei Pamantului.

 

Apoi acest strat izolator termic s-ar autodistruge ultrasonic ori prin microunde?!, apoi in etapa a II-a am bombarda crusta venusiana cu proiectile accelerate masic la viteze relativistice, iar in fata acestor proiectile o raza laser ar realiza o carare vidata prin atmosfera venusiana foarte densa.

 

Aceste proiectile ar fisura crusta venusiana generand un supervulcanism planetar care va elibera cantitati uriase de vapori de apa cat si cenusa si roci pana pe orbita lui Venus intunecand si racind totodata suprafata planetara.

 

Vaporii de apa si cenusa vulcanica vor captura intreaga atmosfera venusiana sub forma unor carbonati si sulfati, in urma ramanand o atmosfera densa de azot si oxigen si foarte multa apa lichida sub forma unui ocean planetar, iar temperatura va urca lent de la -50C la temperaturi cuprinse intre -5C si + 100C.

 

Zonele habitabile se vor gasi in zonele circumpolare.

 

Un scut rezistent din microbule flotabile la foarte mare inaltime va asigura lumina prin fluorescenta si difractie pentru emisfera venusiana intunecata si o protectie pentru radiatiile solare nocive.

 

Ar fi interesant de realizat un scut electromagnetic in fata planetei Venus pe o orbita sincrona in jurul Soarelui, fie o retea de statii-scut-EM pe orbita lui Venus.

 

Marte ar putea fi terraformat urmand modelul terraformarii venusiene, mai exact fisurarea crustei planetare prin aceleasi proiectile relativistice si bombe deuteriu-deuteriu termonucleare ecologice detonate in atmosfera plina de vapori de apa pentru a scinda apa in oxigen si hidrogen, iar in final realizarea unui scut antiradiatii si izolator termic plus o retea de sateliti cu scut EM.

 

Europa, Ganimede si Calisto ar putea fi terraformate prin detonatii termonucleare deuteriu-deuteriu ecologice la suprafata unde vor scinda apa in hidrogen si oxigen, gaze care vor mentine stratul-scut termic si antiradiatii de microsfere flotoare din atmosfera inalta.

 

Mercur este probabil prea uscat dar craterele sale din zonele polare si nu numai ar putea fi inchise sub mari domuri gonflabile si sub scuturi EM, adevarate magnetosfere regionale care ar tine radiatiile nocive la distanta. Asemenea orase ar putea fi realizate oriunde in sistemul solar.

 

Prin reducerea norilor venusieni de acid sulfuric  nu ar rezulta doar apa ci si oxigen.


Asadar din acidul sulfuric ar rezulta apa, dar mai intai am scinda la +800C CO2 in carbon si oxigen, apoi am raci planeta.

 

Norii si ceata de acid sulfuric se afla la o presiune intre 1-10 atmosfere in procent de 1-2% din compozitia atmosferei venusiene iar 1 % vaporii de apa, ceea ce ar echivala cu 20-10% in atmosfera terestra, adică exact cat oxigenul din aerul respirabil si de 10-20 de ori peste vaporii din atmosfera Pamantului, chiar de peste 30 de ori daca luam si vaporii de apa venusieni la un loc, adica s-ar obtine foarte multa{\displaystyle \mathrm {S+2H_{2}SO_{4}\longrightarrow 3SO_{2}\uparrow +2H_{2}O} } apa venusiana.


Am putea alege anumite comete a caror traiectorie sa corespunda, iar cu o vela solara vantul solar ar purtea devia cometele spre Venus (comete din Centura lui Kuiper).

 

Apa cometelor ar captura bioxidul de carbon pe fundul oceanelor sub forma apelor minerale si a carbonatilor.

 

Acelasi principiu ar putea teraforma Mercur, Marte+Ceres si Super-Io.

 

Marte ar putea primi cantitati uriase de apa, azot, samd daca ar aglutina planeta pitica Ceres din vecinatatea sa, plus asteriozii Vesta, Palas, samd.

Ceres are 1/10 din diametrul Lunii.

Cele 3 planete pitice din centura de asteroizi ar contribui putin la cresterea masei lui Marte si ar genera aici oceane adanci si intinse cat si o atmosfera densa.

Un proiect colosal ar fi aglutinarea tuturor lunilor joviene spre luna Io realizandu-se o planeta oceanica de clasa terrestra cu vulcanism  accentuat.

Devierea acestor planete satelit s-ar putea face prin franarea pe orbita, lucru deloc simplu de realizat.

 

Mercur este un Marte cu camp magnetic si este cam cat Marte cu o gravitatie egala cu cea martiana.

 

Bombardment of Venus with refined magnesium and calcium from off-world could also sequester carbon dioxide in the form of calcium and magnesium carbonates. About 8×1020 kg of calcium or 5×1020 kg of magnesium would be required to convert all the carbon dioxide in the atmosphere, which would entail a great deal of mining and mineral refining (perhaps on Mercury which is notably mineral rich).[17] 8×1020 kg is a few times the mass of the asteroid 4 Vesta (more than 500 kilometres (310 mi) in diameter).

https://en.wikipedia...e_in_carbonates

Daca pentru a captura in saruri minerale intreaga atmosfera venusiana am avea nevoie de cativa asteroizi mari de marimea lui 4 Vesta, atunci pentru reducerea norilor de acid sulfuric am avea nevoie chiar de un asteroid de sub 1% din marimea lui 4 Vesta, ceea ce este perfect posibil cu tehnologia actuala.

 

 

Probabil acelasi efect il vom obtine cu un accelerator masic EM cu un proiectil relativistic cu un con-scut de plasma fie un scut pasiv din aerogel, fie bor... pentru a rezista la traversarea atmosferei venusiene foarte dense.

Impactul ar rupe crusta planetei aruncand pana pe orbita cantitati uriase de praf care ar neutraliza norii de acid sulfuric si ar si raci planeta in acelasi timp.

 

O sursa importanta de elemente reducatoare a norilor de acid sulfuric de pe Venus ar putea fi regolitul selenar fie regolitul mercurian.

https://www.bing.com...t=0&vt=1&sim=11

https://www.bing.com...t=0&vt=1&sim=11

 

Iata cum ar putea arata Venus după neutralizarea norilor de acid sulfuric care cauzeaza efectul de seră:

 

Acid-base properties
As an acid, sulfuric acid reacts with most bases to give the corresponding sulfate. For example, the blue copper salt copper(II) sulfate, commonly used for electroplating and as a fungicide, is prepared by the reaction of copper(II) oxide with sulfuric acid:

CuO (s) + H2SO4 (aq)
CuSO4 (aq) + H2O (l)

Sulfuric acid can also be used to displace weaker acids from their salts. Reaction with sodium acetate, for example, displaces acetic acid, CH
3COOH, and forms sodium bisulfate:

H2SO4 + CH3COONa
NaHSO4 + CH3COOH

NaOH(aq) + H2SO4 (aq)
NaSO4(aq) +H2O(l)

O multime de substante baze neutralizeaza acidul sulfuric, iar daca s-ar cerne peste Venus o asemenea substanta banala, s-ar obtine o sare, un sulfat metalic greu care s-ar depune la solul venusian si nu ar mai disocia in sulfati ca intr-un cerc vicios.

In atmosfera inalta s-ar forma nori densi de apa, nori adevarati care s-ar comporta extrem de interesant in sensul ca norii de apa vor fi de doua ori mai putini decat norii de acid sulfuric si se vor comporta diferit in sensul ca in mare masura vor avea o stare lichida intre 70km si pana la 50km altitudine, ceea ce inseamna ca in acest interval vor exista periodic ferestre mari de cer senin pe unde se va pierde caldura venusiana in spatiu mai ales pe partea intunecata a planetei si astfel după cca. cateva luni Venus va ajunge la o temperatura ambientala intre -50C si +60C.


 

Din moment ce temperaturile vor atinge acest interval, dioxidul de carbon va forma oceane lichide si chiar si o calota glaciara pe partea intunecata a planetei, iar presiune atmosferica va scadea astfel undeva intre cativa bari si cateva zeci de bari.


In conditiile de la suprafata lui Venus apa nu va putea sublima din cauza presiunii destul de mari de aceea Venus nu va mai avea nori deloc si va contine doar apa la sol sub forma lichida si solida, iar din aceasta cauza planeta va deveni chiar mai rece decat Pamantul desi se gaseste mult mai aproape de Soare.


Probabil ca pe partea intunecata a planetei si la poli se va condensa aproape toata atmosfera ramanand doar cativa bari liberi continand in special vapori de acid carbonic adica apa minerala pe partea luminata de catre soare.

Venus nu va fi o lume habitabila dar va avea conditii decente pentru explorare si colonizare, posibil chiar mari in zonele sub-polare.


PS:  Acidul sulfuric din atmosfera venusiana este aproape la fel de mult precum oxigenul din atmosfera Pamantului doar ca este concentrat tot in partea de sus a atmosferei venusiene.

Un proiect de neutralizare a acestui strat ce produce efectul de sera pe Venus ar fi posibil.

 

 

 

Vapori de apa vulcanica prin foraje geotermale si mai ales prin ape subterane depozite subterane acvifere.

Temperatura lui Venus este de +400C in atmosfera si la cativa metrii in subteran, mai adanc avem temperaturi ambientale pozitive la temperatura camerei.

Cu privire la Venus eu prevad o planeta glaciara cu calota glaciara planetara ori cu oceane glaciare, totul la -57C ori la -80C in functie de cat de bine vom reusi sa umbrim planeta si de ponderea nitrogenului si a dioxidului de carbon dupa scaderea graduala a temperaturii si a presiunii atmosferice.

In regiunile polare vom construi o retea de orase-dom acoperite, iar pe orbita planetei in punctul Lagrange un oras-statie inelar ori cilindric cu diametrul de cativa km.

daca am avea o exoplaneta foarte asemanatoare cu Pamantul, ponderea oxigenului ar putea varia de la sub 20% la peste 50%, lucru care fie ne-ar otravi, am face combustie spontana din simplele procese metabolice ori ne-am asfixia.

Daca ar fi o planeta aproape identica cu Pamantul, o variatie de doar 0,1-3% a dioxidului de carbon si a monoxidului de carbon ar face-o letala pentru oameni.


Asadar ce poate insemna Marte mai usor de teraformat?!

Atmosfera lui Marte teraformat nu ar contine mai deloc azot si oxigen ci mai degraba vapori de apa, dioxid de carbon, si monoxid de carbon, asa ca ar fi letala pentru oameni desi Marte poate fi insorit, caldut, inverzit si plin de oceane.

Cred ca savantii nu constientizeaza ca exista doar semi-terraformare si singurele regiuni habitabile vor fi orasele-domuri, adica zone restranse de pe suprafata planetelor si nimic mai mult.

Umanitatea trebuie sa invete sa creeze habitacluri similare mediului terestru, deoarece chiar si dincolo de sistemul solar vom gasi un numar urias de planete similare Pamantului dar niciuna cu o atmosfera identica cu atmosfera planetei noastre.

De asemenea arcele orbitale O'Neill ar sustine un mediu habitabil identic cu mediul terestru, ceea ce doar la suprafata lui Venus ar mai fi posibil datorita gravitatiei identice cu a Pamantului ori deasupra norilor acestuia, in rest ar trebui mers departe deasupra norilor lui Saturn, Uranus si Neptun.

Habitaclurile in nori imi par o idee periculoasa din cauza complexitatii situatiei si a conditiilor locale.

Oricum dupa augmentarea biologica a omului, nu va mai fi nevoie sa teraformam nimic si vom ajunge impreuna cu dronele si droizii din miezul unor planete pana in atmosfera lui Jupiter ori gheturile lui Pluto si vom putea realiza lucruri extraordinare cu resurse infinite la dispozitie.

Vom umple universul cu sonde rapide autoreplicante si ma refer la sonde mari si robuste pline cu roboti si tehnologie, care vor zbura cu viteze chiar si peste 1/2 din viteza luminii.

In norul lui Oort la marginile sistemului solar vom stabili avanposturi pe planetele de aici si nave telescop care vor puteaprivii spre muntii si marile a multe milioane de planete din vecinatatea noastra galactica si mai ales vor putea prinde emisii video apartinand civilizatiilor extraterestre.

Eu cred ca Era urmatoare se va numi Era Eternitatii sau Sfarsitul Copilariei Umanitatii si va incepe peste cateva decade cu tehnologia interfetei neurale directe intre om si masina, retele informatice ...

 

Venus ar fi dupa teraformare destul de uscata dar prin reactivarea vulcanismului planetar ar putea deveni o planeta a stepelor iar nu un desert arid. De altfel atmosfera venusiana contine un potential de apa si sau hidrogen cat Marile Lacuri din America de Nord.

 

Mare parte din uriasa cantitate de monoxid de carbon din atmosfera venusiana se va pierde in cosmos impreuna cu surplusul de oxigen prin erodarea atmosferei de catre vantul solar.

Cantitatea de monoxid de carbon ramasa in atmosfera va fi eliminata prin reactii chimice cu metalele din crusta venusiana eliberate prin explozii termonucleare si prin proiectile orbitale de impact accelerate in tunuri EM.

In final vom avea o planeta Venus cu o atmosfera aproape identica cu atmosfera Pamantului si desertica, dar avand un potential acvifer subteran, deci ape subterane si din vulcanism.

 

 

H2SO4 + CO2 → H2CO3 + SO3

 

{\displaystyle \mathrm {1)\ CO_{2}+H_{2}O\ \rightleftharpoons \ H_{2}CO_{3}} }Acidul sulfuric reacționează cu unele nemetale, ca sulful sau carbonul.[36]:

{\displaystyle \mathrm {C+2H_{2}SO_{4}\longrightarrow CO_{2}\uparrow +2SO_{2}\uparrow +2H_{2}O} }

In ÎÎ

Prin terraforming am obtine o atmosfera de oxigen de 100 de ori mai densa decat cea pamanteana, asadar nu am rezolva nimic.

 

Solutia cea mai buna ar fi umbrirea completa a planetei Venus si solidificarea atmosferei de CO2, CO si H2SO4, după ce in prima faza am incalzi planeta pentru a obtine oxigen in procent terestru prin scindarea unei parti din CO2.

 

Atmosfera venusiana ar putea fi respirabila folosind filtre speciale, iar la suprafata ar exista depozite mari de CO2 solid, ceva H2SO4 si putina apa, totul la -50C, in timp ce planeta ar fi luminata slab prin gazul parasolar.

 

Astronomers have detected that the atmosphere of Venus consists of 0.002% water vapor. Compare that to the Earth's atmosphere, which contains 0.40% water vapor.

 

În atmosfera Pământului avem 0.00093% (cca. 2% din totalul gazelor atmosferice) apa din totalul apei ca vapori iar 96% fiind in oceane.

 

În atmosfera venusiana exista un potential pentru apa similar marilor lacuri din America de nord, fie de 10 ori mai mare.

 

Asadar din acidul sulfuric ar rezulta apa, dar mai intai am scinda la +800C CO2 in carbon si oxigen, apoi am raci planeta.

Norii si ceata de acid sulfuric se afla la o presiune intre 1-10 atmosfere in procent de 1-2% din compozitia atmosferei venusiene iar 1 % vaporii de apa, ceea ce ar echivala cu 20-10% in atmosfera terestra, adică exact cat oxigenul din aerul respirabil si de 10-20 de ori peste vaporii din atmosfera Pamantului, chiar de peste 30 de ori daca luam si vaporii de apa venusieni la un loc, adica s-ar obtine foarte multa{\displaystyle \mathrm {S+2H_{2}SO_{4}\longrightarrow 3SO_{2}\uparrow +2H_{2}O} } apa venusiana.

 

Totusi am descoperit o a treia varianta care se refera tot la regiunile polare la nord /sud de paralela 60 /70, o teraformare completa la temperaturi peste zero grade poate chiar si pana la +30 C, in timp ce restul planetei ar fi cufundata sub o calota glaciara intertropicala sub un scut parasolar in semi intuneric, adica sub o seara eterna.

 

Circulatia atmosferica pe latitudini ar favoriza separatia arealului polar de restul planetei, la fel si a a scutului-gaz-bule-micro-helionice din zonele polare ce ar avea doar rol de scut antiradiatii, fata de scutul din celelalte regiuni atmosferice pe latitudini temperate si intertropicale care ar fi opac la orice tip de radiatii si ar avea culoarea alba ori argintie.

 

Circulatia atmosferica venusiana nu s-ar manifesta accentuat chiar daca la suprafata ar exista diferente uriase de temperatura, desi aerul ar fi sec, lipsit de umiditate, chiar zonele polare ar fi deserturi calde fara pic de apa la suprafata. Totusi intre zonele intertropicale la -200 C si zonele sub-arctice, ar putea exista o zona „temperata” cu vanturi ceva mai puternice.

 

 

Se pare ca plantele in special alge si bacterii se pot dezvolta la presiuni foarte mari, iar 70-30 bari nu este o presiune mare pentru extremofite si barofile.

In aceste conditii Venus ar dispune de un ocean care ar acoperi 90% din suprafata planetara, desi doar primii cativa metrii ar fi apa lichida, iar restul de cativa km pana la fund ar fi dioxid de carbon lichid. Apa oceanului ar avea culoare verde ori brun-roz fiind plina de alge fotosintetizatoare ori bacterii sintetizatoare.

Aceste conditii nu ar fi adecvate locuirii umane, dar ar merge in cazul explorarilor cu submarinele oceanice cat si cele atmosferice.

Totusi aceste plante nu ar avea vreun rol esential in teraformarea venusiana deoarece din start am avea oxigen in concentratie atmosferica terestra si nu ar fi nevoie sa crestem aceasta concentratie peste 23% si nici de dioxidul de carbon nu am putea scapa nici in milioane de ani de fotosinteza.

Asadar un Venus de tip Antarctica ar fi ideal locuirii si explorarii umane după fosilele arhaice, resurse minerale, organice, samd.

Ar fi o atmosfera respirabila, dar totul ar fi inghetat bocna la 2-3 atmosfere presiune si -60 C /-70 C.

Dar la ecuator si la poli cat si la 40-50 km altitudine s-ar putea atinge si temperaturi de +7C ori chiar si + 20C /+30C.

 

 

https://www.descoper...ele-extremofile

https://biology.stac...nts-can-survive

Specialiştii afirmă că unele tradigrade pot supravieţui la temperaturi mult sub cea la care apa îngheaţă sau la fierbinţeli de peste 100 grade C; rezultatele unor experimente realizate în anii 1920 vorbesc despre niveluri incredibile, de aproape -200 grade C şi plus 151 grade C!!! Tardigradele pot suporta niveluri de radiaţii de 1000 de ori mai mari decât cel pe care îl pot îndură oamenii, presiuni uriaşe (6000 de atmosfere, după cum a arătat un experiment recent - de 6 ori mai mari decât presiunile din cele mai adânci gropi oceanice!) şi, la polul opus, vidul. Şi, în ciuda faptului că sunt fiinţe acvatice, pot trăi aproape 10 ani fără apă, cu procesele vitale practic suspendate, într-o stare numită criptobioză, un soi de pauză a vieţii, din care îşi revin în câteva ore, dacă au la îndemână o picătură de apă.

Judging from the fact that all the living creatures we have examined, both animals (tardigrades and Artemia) and plants (Ptychomitrium, Venturiella and white clover) were alive after exposure to 7.5 GPa, it was suggested that most of the proteins of those creatures which unfolded at the early stage of the compression remain principally unchanged after exposure to the very high pressure of 7.5 GPa. It was also suggested that the unfolding of proteins was completely reversible up to 7.5 GPa.

The maximum hydrostatic pressure applied to all the living specimens investigated in the present experiments corresponds to that in the upper mantle, at the depth of 180 km from the surface of the earth.

So survival of plants at 75,000 times atmospheric pressure is possible. In this experiment the exposure times were 30 minutes and 1 hour for the plants and 13 hours for the animals.

https://en.m.wikiped...wiki/Piezophile

an organism that have its maximum rate of growth at a hydrostatic pressure equal or above 10 MPa (= 99 atm = 1,450 psi), when tested over all permissible temperatures.[1]

Hyperpiezophile is defined as an organism that have their maximum rate of growth above 50 MPa (= 493 atm = 7,252 psi).[3]

The current record for highest hydrostatic pressure where growth was observed is 130 MPa (= 1,283 atm = 18,855 psi), by the archaea Thermococcus piezophilus.


The high pressures experienced by these organisms can cause the normal fluid cell membrane to become waxy and relatively impermeable to nutrients. The high pressure decreases the ability of the subunits of multimeric proteins to interact. Thus, large protein complexes must interact to decrease pressure-related effects and regulate processes such as protein and DNA synthesis, which are sensitive to high pressure. Piezophilic bacteria have a high proportion of fatty acids in their cytoplasmic membrane, which allows membranes to remain functional and keep from gelling at high pressures.[6]

In July 2019, a scientific study of Kidd Mine in Canada discovered sulfur-breathing organisms which live 7900 feet below the surface, and which breathe sulfur in order to survive. These organisms are also remarkable due to eating rocks such as pyrite as their regular food source.[37][38][39]

https://en.m.wikiped...ki/Extremophile

 

 

Teraformarea planetei Venus va cuprinde mai multe etape.

Primul pas va consta in ecranarea termica a atmosferei printr-un gaz micronic helionic, care va actiona asemenea unei folii cu efect izolator de sera fiind totodata transparent spectrului vizibil.

Acest gaz va fi produs de catre statii atmosferice plutitoare direct din bioxidul de carbon si celelalte elemente existente la fata locului.

Astfel temperatura atmosferei va urca in cativa ani pana la peste +800C, temperatura la care dioxidul de carbon disociaza in oxigen si monoxid de carbon.

Oxigenul se va acumula astfel in partea superioara a atmosferei venusiene alaturi de azot.

Reactia de disociere a bioxidului de carbon este exoterma, adica adauga un plus de caldura mediului, ceea ce ar accelera infinit de mult efectul de sera scurtand timpul teraformarii.

In momentul in care cantitatea de oxigen va depasi cantitatea din atmosfera Pamantului, scutul termic va putea fi indepartat si procesul sintezei oprit.

Pasul urmator va cuprinde depistarea depozitelor subterane de apa si eliberarea lor prin impactul cu proiectile cu focos termo-nuclear accelerate pe orbita in regim railgun.

Astfel se vor elibera cantitati uriase de apa direct din crusta planetara.
Devierea unor comete ar putea fi o alternativa in acest sens.

Urmatorul pas va fi realizarea unui gaz-scut parasolar cu difractie florescenta pentru luminarea jumatatii venusiene intunecate si care va permite doar trecerea spectrului vizibil atenuat si va fi si scut impotriva vantului solar contra eroziunii atmosferice si a razelor ionizate.

Temperatura atmosferei venusiene se va stabiliza pe la +25C, iar presiunea atmosferica de cateva atmosfere.

Acum vine partea interesanta, practic in aceste conditii dioxidul de carbon devine lichid si fiind mai greu decat apa, se va scurge exact sub apa oceanului venusian si se va conserva pe viitor in aceasta situatie.

Aceste conditii comune pentru dioxidul de carbon lichid cat si pentru apa lichida sunt intrunite la temperaturi intre -10C si +300C, plus o presiune de mai multe atmosfere cam 3-8 atm pana la 200 de atmosfere.

 

 

Atunci am putea avea alta solutie extrema de aceasta data:

 

PS:
Revenind la Venus, ideea este ca desi la sol temperatura ar putea atinge mii de grade celsius, in straturile atmosferice superioare s-ar mentine temperaturi optime pentru functionarea aparatelor.
Ma gandesc la o solutie eleganta in care acel gaz-inteligent ar cobora mereu deasupraa paturii dense de CO2, ori la existenta a doua scuturi termice de acest fel aflate la altitudini diferite, in ideea ca procesul de disociere termica a CO2 trebuie sa continue si la 1 bar ori sub 1 bar, pentru ca sa scapam si de ultimele urme de CO2 venusian.

 

Daca efectul termicc de sera nu se va mentine pana la capat, atunci am putea sparge crusta venusiana cu un proiectil cu viteza relativista si activa un mega-vulcanism care ar elibera cantitati uriase de pulberi, calciu-magneziu si vapori de apa, toate acestea reactionand cu ramasitele de CO2 din atmosfera venusiana.


Atmosfera lasata in urma va fi identica ori destul de similara cu aceea de pe Pamant, iar un alt scut-atmosferic venusian din gaz-inteligent va acrana radiatia solara nociva protejand atmosfera nou creata, acesta din urma va fi un gaz vesnic cu miez helionic si va pluti foarte sus deasupra atmosferei venusiene.

 

 

2.) Am putea genera un gaz micronic din microbule termoizolante dar transparente la lumina solara, adica un fel de folie mobila trasa peste Venus dar care aproape ar inchide Venus intr-un cuptor cu temperatura mereu in crestere.

 

 

In cativa ani temperaturile pe Venus vor urca la mii de grade celsius iar legaturile din cadrul dioxidului de carbon s-ar rupe rezultand ploi continue de grafit si o atmosfera de oxigen de 100 de ori mai densa decat cea terestra.

 

In etapa a doua după cca. cativa ani am distruge acest scut venusian prin detonatii ecologice termonucleare ori printr-o comanda electrica-electronica daca bulele ar fi inteligente si sensibile la raze X ori LASER, ori ...?!, iar atmosfera de oxigen ar fi spulberata in spatiu in alti cativa ani.

 

Pe cand vom considera ca oxigenul a ajuns la valorile de pe Pamant, vom genera alt gaz-micronic inteligent, de data aceasta un gaz rezistent si vesnic care ar fi semiopac si opac la radiatiile UV si altele nocive, devenind un fel de scut planetar tip-ozon si magnetic reducand eroziunea atmosferica datorata vantului solar, dar va fi si transparent pentru radiatia IR care iese de pe planeta, deci va face ca pe Venus temperaturile intertropicale de pe fata luminata a planetei sa nu fie de +120 C ci de doar +40/+50C la fel ca pe Pamant.

 

Totodata noul scut va avea capacitati de fluorescenta prin difractie, mai exact pe partea intunecata a planetei cerul va fi luminat prin difractie dinspre partea luminata a planetei plus un efect de fluorescenta foto-chimica-electrica.

 

 

Cele mai bune regiuni de locuit vor fi cele polare unde diferentele termice vor fi minime similare celor din zona ecuatoriala de pe Pamant.

 

 

Problema este ca prin aceasta metoda am scapat aproape de tot CO2 si oxigenul venusian, cat si de azot, dar si de apa, astfel ca planeta ar avea o suprafata carbonica din carbune si apa deloc, asa ca apa se va obtine exclusiv din foraje in subteran, iar zonele de diversitate vor fi varfurile vulcanilor activi care ar fi singurele zone de crusta expusa si neacoperita de marile depozite de grafit.

 

Practic grafitul venusian ar putea acoperi planeta intreaga cu un strat gros de dimensiuni kilometrice chiar ori macar cu cativa metrii buni.

 

După teraformare s-ar putea traii pe Venus la fel ca pe Pamant, doar ca nu ar exista apa la discretie, in plus am putea arde grafitul drept combustibil avand la discretie, dar ar trebui sa inventam si metode de stingere uscata a posibilelor incendii de grafit avand in vedere ca toata planeta ar fi un mare depozit de suprafata de grafit uscat, fara ploi, fara umezeala, ceea ce ar putea provoca o reactie in lant cu incendiu vesnic la nivel planetar.

 

 

Totusi atmosfera isi va regenera relativ usor umiditatea din vulcanismul local, dar tot nu vom reusi sa umezim bine stratul de grafit.

 

 

Nu vom teraforma pana la capat planeta Venus facand-o habitabila, dar o vom putea transforma intr-un mare laborator planetar cu conditii de trai pentru bacterii ori chiar plante modificate genetic.

 

Sa incepem cu inceputul!

 

1.) In atmosfera venusiana exista atata apa sub forma de vapori incat daca planeta s-ar raci iar vaporii s-ar condensa s-ar obtine un ocean planetar cu adancimea de cativa metrii dar extrem de coroziv, practic ar fi similar probabil electrolitului din baterie in prima faza, apoi extrem de alcalin mult peste ceea ce are Marea Moarta.

 

Dar in atmosfera venusiana mai exista de 8 ori mai mult acid sulfuric decat apa, iar acidul sulfuric daca s-ar condensa ar ploua pe planeta si ar produce inca cativa metrii de apa, plus uriase depozite de saruri compusi ai sulfului,  azotului si carbonului, plus oxigen, clor, samd

 

Ideea este ca reactia acidului sulfuric ar produce apa reziduala chiar si oxigen.

 

Restul oxigenului atmosferic va fi produs prin detonatii constante termonucleare in atmosfera venusiana, dar vom detona doar bombe ecologice fara metale grele, astfel vom scinda CO2 si CO in mult oxigen si ploi de grafit.

 

La final vom avea un ocean sifonat care ar fierbe continu din cauza acidului carbonic, in timp ce zona oceanica va fi calcaroasa, unele zone de uscat vor fi negre de la solul grafitic.

 

Atmosfera probabil va ramane destul de bogata in CO2.

 

Probabil ca ar fi nevoie de prea multe detonatii termonucleare pentru realizarea unor conditii optime pentru formele de viata si in acest caz s-ar putea ca proiectul sa nu fie viabil.

 

6.) Venus ... un proces destul de laborios de supraincalzire si descompunere atmosferica, apoi activare vulcanica, un nou gaz-scut pt. racire.
 

... suprafata de carbon depusa, in timp ce acizii ar realiza la sol saruri minerale impreuna cu rocile, iar vulcanii reactivati ar acoperi cu cenusa atat grafitul cat si calotele glaciare de CO2, iar apa rezultata ar contribui si ea la stabilizarea CO2 in roci pe fundul viitoarelor oceane.
Nu stiu ce vom obtine rapid dupa aceste procese, insa cert este ca am avea intermediar o planeta semi-habitabila.

Iata etapele:

1. Accelerarea efectului de sera cu gazul-folie, disocierea termica a

CO2-> C + O, apoi depunerea carbonului-grafit pe sol si degajarea oxigenului in atmosfera inalta;

-o mica parte a oxigenului va reactiona cu hidrogenul din acidul sulfurig generand apa care la randul sau va spala continentele de grafit care va umple oceanele.

-cea mai mare parte a oxigenului va reactiona ciclic prin compunere si descompunere cu carbunele depus pe sol pana atmosfera va ajunge sa fie purificata complet de CO2, ramanand Enorm de mult oxigen si azot care vor reactiona formand depozite uriase de azotati in marile venusiene pline cu sulf.

 

-in final vulcanii reactivati vor ceda din nou apa in mediul venusian, iar scutul –folie va fi inlocuit cu un scut anti-efect de sera.

 

 

 

A.

 

 

 

 

 

 

 
 

Ma intreb in ce masura 'gazul de firmament' este util teraformarii.
Imi imaginez ca acesta este un pseudo-gaz in fapt este o pulbere microscopica extrem de rezistenta, incarcata cu hidrogen, ne putem imagina niste balonase de dimensiuni micronice umplute cu hidrogen, un fel de spuma sau substanta expandata si extrem de rezistenta.

O asemenea subtanta ar putea lua locul ozonului si chiar mai mult, ar putea incalzi planete sau raci planete.

Gazul de firmament ar putea incalzi chiar si lunile joviene, ar realiza un ecran termic protector de tipul efectului de sera.

Mercur, Venus, Luna, Marte, Ceres, Europa, Io, Ganimede, Calisto, Titan, Triton, Uranus, Neptun, Pluton, etc, toate ar putea arata ca si Pamantul.

De pilda pe Venus acest scut ar putea ridica temperatura la punctul de scindare al CO2, rezultand Carbon si oxigen, iar carbonul s-ar putea depune sub norii de CO2 aflati langa sol, iar oxigenul ar urca in vazduh.

Majoritatea substantelor volatile pentru reconstructia atmosferelor planetare le vom obtine din mantaua planetelor prin sectionare, foraj, detonatii termo-nucleare ecologice, etc. 

Pentru TERAFORMAREA lui Venus, pentru racirea acestei planete, o cale simpla si usoara, ar fi realizarea unor alge flotante atmosferice, realizate prin inginerie genetica.

Acestea s-ar inmulti in atmosfera inalta in stratul de nori de H2O, la 50 km altitudine la temperaturi de +30 / -50 grade celsius, consumand O2, CO2, H2O, N2, si poate ceva acid sulfuric / SO2.


Ar fi nevoie si de imprastierea de praf in atmosfera inalta, ca mediu de cultura pt., a fi capturat de aceste alge flotante, ori aceste alge-bacterii dupa terminarea ciclului de viata, ar pluti in deriva si altele le-ar asimila substantele oligo-elemente, ori poate praful cosmic care cade constant pe planeta.

 

Realizarea de nori din spuma helionica de aerogel opac ori reflector-oglinda, acestia putand eclipsa temporar planeta scazandu-i temperatura pana la cca. -50C incalzii planeta pana la +900 /1200 C.

 

Proiectile masice, ori bombele termo-nucleare ECO, vor lovi vinele de magma din cosurile vulcanice de pe Venus si de pe Marte si vor genera H2O si praf.

 

(Venus - la 1 atm am avea de 4 ori mai mult N2 decat pe Terra, si fara O2, cu prea putina H2O !).

 

- Am avea  o calota planetara de gheata carbonica, groasa de cativa km/ zeci de km !

- Magnetosfera ar cobora pana la 2 km de sol (fara scut) !
- Cum putem scapa de 1/3 din azotul atmosferic venusian ?!


SOLUTII:

 

1.)    - suctionam CO2 si N2, pe orbita venusiana, si le utilizam pt., propulsia navelor, care vor impinge ice-bergurile de CO2 si NO3/ N2, spre Io, si oriunde va fi nevoie, Venus devenind sursa de CO2 si N2 ( in afara de Mercur si Venus insasi, care pot converti NH3 si CH4 adus de pe planetele exterioare, in N2)!

 

2.) – APA, va fi adusa prin prabusirea de comete mari !

 

- o parte din CO2 venusian, poate ajunge in atmosfera Martiana, la fel si N2 (ambele gaze colectate de pe orbita venusiana).


- uriasele cargouri cosmice, vor fi tractate de puternice nave, care vor utiliza Carbon si oxizi de azot (tot venusiene), scindate pe orbita prin energie solara !

 

Polii venusieni vor putea fi locuibili, iar in atmosfera inalta vor pluti nori transparenti din micro-aerogel-helionic ? care vor proteja atmosfera de actiunea radiatiei solare nocive, adica va functiona similar cu campul magnetic planetar al Pamantului.

 

Rotation

According to Alex Alemi and David Stevenson of the California Institute of Technology, their recent study of models of the early solar system shows that it is very likely that, billions of years ago, Venus had at least one moon, created by a huge impact event.[40][41] About 10 million years later, according to Alemi and Stevenson, another impact reversed the planet's spin direction. The reversed spin direction caused the Venusian moon to gradually spiral inward[42] until it collided and merged with Venus.

 

Venus rotates once every 243 days – by far the slowest rotation period of any of the major planets. A Venusian sidereal day thus lasts more than a Venusian year (243 versus 224.7 Earth days). However, the length of a solar day on Venus is significantly shorter than the sidereal day; to an observer on the surface of Venus the time from one sunrise to the next would be 116.75 days. Nevertheless, Venus's extremely slow rotation rate would result in extremely long days and nights, which could prove difficult for most known Earth species of plants and animals to adapt to. The slow rotation also likely accounts for the lack of a significant magnetic field.

One proposal is a system of orbiting solar mirrors which might be used to provide sunlight to the night side of Venus and possibly shade to the day side surface. In addition to his suggestion of slatted system of mirrors near the L1 point between Venus and the Sun, Paul Birch has proposed a rotating soletta mirror in a polar orbit, which would produce a 24-hour light cycle.[3]

Speeding up Venus's rotation would require many orders of magnitude greater amounts of energy than construction of orbiting solar mirrors, or even than the removal of Venus's atmosphere. Recent scientific research suggests that close fly-bys of asteroids or cometary bodies larger than 60 miles across could be used to move a planet in its orbit, or increase the speed of rotation.[9] G. David Nordley has suggested, in fiction[10], that Venus might be spun-up to a day-length of 30 Earth-days by exporting the atmosphere of Venus into space via mass drivers. This concept was also explored more rigorously by Birch.[11]

Terraforming of Venus

From Wikipedia, the free encyclopedia

Jump to: navigation, search

 

 

Artist's conception of a terraformed Venus. (credit: Daein Ballard)

There is a theoretical debate as to whether or not Venus can be terraformed for human habitation. It would require several major changes:

  • Reducing Venus's 500 °C (770 K) surface temperature.
  • Eliminating most of the planet's dense 9 MPa (~90 atm) carbon dioxide atmosphere, via removal or conversion to some other form.
  • Establishing a day/night light cycle shorter than Venus's current 116.75 day solar day.

These goals are closely interrelated, since Venus's extreme temperature is due to the greenhouse effect caused by its dense atmosphere.

Contents

[hide]

[edit] Solar Shades

[edit] Space Based

Solar shades could be used to reduce the total insolation received by Venus, cooling the planet somewhat.[1] A shade placed in the Sun-Venus L1 Lagrange point also serves to block the solar wind, removing the radiation exposure problem on Venus.

Construction of a suitably large solar shade is a potentially daunting task. The size of the shade would be four times the diameter of Venus itself if at the L1 point. This size would necessitate construction in space. There would also be the difficulty of balancing a thin-film shade perpendicular to the Sun's rays at the Sun-Venus L1 point with the incoming radiation pressure, which would tend to turn the shade into a huge solar sail. If the shade were left at the L1 point, the pressure would add too much force to the sunward side and necessitate moving the shade even closer to the Sun than the L1 point.

Modifications to the L1 solar shade design have been suggested to solve the solar sail problem. One suggested method is to use polar orbiting, solar-synchronous mirrors that reflect light toward the back of the sunshade, from the non-sunward side of Venus. Photon pressure would push the support mirrors to an angle of 30 degrees away from the sunward side.[2]

Paul Birch proposed[3] a slatted system of mirrors near the L1 Lagrange point between Venus and the Sun. The shade's panels would not be perpendicular to the sun's rays, but instead at an angle of 30 degrees, such that the reflected light would strike the next panel, negating the photon pressure. Each successive row of panels would be +/- 1 degree off the 30-degree deflection angle, causing the reflected light to be skewed 4 degrees from striking Venus.

Solar shades could also serve as solar power generators. Space-based solar shade techniques are largely speculative because they are beyond our current technological grasp. The vast sizes require a quantity of material that is many orders of magnitude greater than is currently transported into space.

Other proposed space-based cooling solutions involve the creation of an artificial Planetary ring. Rings created by placing debris in orbit would provide some shade, but to a lesser extent. Aluminum could be mined from Earth's moon or another source and placed in orbit around Venus. The inclination of the rings would also need to be such that they present a significant amount of surface area to the Sun.

[edit] Atmospheric or Surface Based

See also: Colonization of Venus#Aerostat habitats and floating cities

Cooling could also be effected by placing reflectors in the atmosphere or on the surface. Reflective balloons floating in the upper atmosphere could create shade. The number and/or size of the balloons would necessarily be great. Geoffrey A. Landis has suggested[4] that if enough floating cities were built, they could form a solar shield around the planet, and could simultaneously be used to process the atmosphere into a more desirable form, thus combining the solar shield theory and the atmospheric processing theory with a scalable technology that would immediately provide living space in the Venusian atmosphere. If made from carbon nanotubes (recently fabricated into sheet form) or graphene (a sheet-like carbon allotrope), then the major structural materials can be produced using carbon dioxide gathered in situ from the atmosphere. The recently synthesised amorphous carbonia might prove a useful structural material if it can be quenched to STP conditions, perhaps in a mixture with regular silica glass. According to Birch's analysis such colonies and materials would provide an immediate economic return from colonizing Venus, funding further terraforming efforts.

Increasing the planet's albedo by deploying light color or reflective material on the surface could help keep the atmosphere cool. The amount would be large and would have to be put in place after the atmosphere had been modified already, since Venus's surface is currently completely shrouded by clouds.

An advantage of atmospheric and surface cooling solutions is that they take advantage of existing technology. A disadvantage is that Venus already has highly reflective clouds (giving it an albedo of 0.65), so any approach would have to significantly surpass this to make a difference.

[edit] Eliminating Dense Carbon Dioxide Atmosphere

[edit] Biological approaches

A method proposed in 1961 by Carl Sagan involves the use of genetically engineered bacteria to fix carbon into organic forms.[5] Although this method is still commonly proposed in discussions of Venus terraforming, later discoveries showed it would not be successful. The production of organic molecules from carbon dioxide requires an input of hydrogen, which on Earth is taken from its abundant supply of water but which is nearly nonexistent on Venus. Since Venus lacks a magnetic field, the upper atmosphere is exposed to direct erosion by solar wind and has lost most of its original hydrogen to space.

Furthermore, any carbon that was bound up in organic molecules would quickly be converted to carbon dioxide again by the hot surface environment. Venus would not begin to cool down until after most of the carbon dioxide has already been removed. Thirty years later, in Pale Blue Dot, Sagan conceded that his original proposal for terraforming would not work because the atmosphere of Venus is far denser than was known in 1961.[6]

Floating colonies could gradually transform the Venusian atmosphere: for example, their reflectivity could alter the overall albedo of Venus. Colonies could also grow plant matter, if water or another source of hydrogen was imported, which would gradually sequester carbon dioxide in the air. However, it would take an enormous number of such colonies, and large quantities of introduced hydrogen, to have a significant atmospheric impact, as there is over the 1.2×1020 kg of carbon in Venus's atmosphere.

[edit] Introduction of hydrogen

Bombarding Venus with hydrogen, possibly from some outer solar system source, and reacting with carbon dioxide, could produce elemental carbon (graphite) and water by the Bosch reaction. It would take about 4×1019 kg of hydrogen to convert the whole Venusian atmosphere. (Loss of hydrogen due to the solar wind is unlikely to be significant on the timescale of terraforming.) Birch suggests disrupting an ice-moon of Saturn and bombarding Venus with its fragments to provide perhaps 100 metres/sq. metre of water. The resulting water would cover about 80% of the surface compared to 70% for Earth, although the water would amount to only roughly 10% of the water found on Earth, due to the shallowness of potential Venusian oceans.[3]

[edit] Capture in carbonates

Bombardment of Venus with refined magnesium and calcium metal could sequester carbon dioxide in the form of calcium and magnesium carbonates. About 8×1020 kg of calcium or 5×1020 kg of magnesium would be required, which would entail a great deal of mining and mineral refining.[7] 8×1020 kg is a few times the mass of the asteroid 4 Vesta (more than 300 miles in diameter).

Modelling by Mark Bullock[8] of Venus' atmospheric evolution suggests that existing surface minerals, particularly calcium and magnesium oxides, could serve as a sink of carbon dioxide and sulphur dioxide. If these could be exposed to the atmosphere then the planet would cool and its atmospheric pressure decline somewhat. One of the possible end states modelled by Bullock was a 43 bar atmosphere and 400 K surface temperature.

[edit] Direct liquefaction and sequesterization

Birch's proposal[3] involves using a solar shade to cool Venus down sufficiently to permit liquefaction, from a temperature less than 304.18 K and partial pressures of CO2 down to 73.8 bar (carbon dioxide's critical point) and then down to 5.185 bar and 216.85 K (carbon dioxide's triple point). Below that temperature, freezing of atmospheric carbon dioxide into dry ice will cause it to deposition onto the surface, after which the frozen CO2 would be buried and maintained in that condition by pressure, or shipped off-world. After this process was complete, the shades could be removed or solettas added, allowing the planet to partially warm again to temperatures comfortable for Earth life. A source of hydrogen or water would still be needed, and some of the remaining 3.5 bar of atmospheric nitrogen would need to be fixed into the soil.

[edit] Removing Atmosphere

The removal of Venus's atmosphere could be attempted by a variety of methods, possibly in combination. Directly lifting atmospheric gas from Venus into space would likely prove very difficult. Venus has sufficiently high escape velocity to make blasting it away with asteroid impacts impractical. Pollack and Sagan calculated in 1993[6] that an impactor of 700 km diameter striking Venus at greater than 20 km/s, would eject all the atmosphere above the horizon as seen from the point of impact, but since this is less than a thousandth of the total atmosphere and there would be diminishing returns as the atmosphere's density decreased a very great number of such giant impactors would be required. Smaller objects would not work as well, requiring even more. The violence of the bombardment could well result in significant outgassing that replaces removed atmosphere. Most of the ejected atmosphere would go into solar orbit near Venus, and, without further intervention, could be captured by Venus' gravitational field and become part of the atmosphere once again.

Removal of atmospheric gas in a more controlled manner could also prove difficult. Venus's extremely slow rotation means that space elevators would be relatively very difficult to construct as the planet's geostationary orbit lies an impractical distance above the surface; and the very thick atmosphere to be removed makes mass drivers useless for removing payloads from the planet's surface. Possible workarounds include placing mass drivers on high-altitude balloons or balloon-supported towers extending above the bulk of the atmosphere, using space fountains, or rotovators. Such processes would take a great deal of technical sophistication and time, however, and may not be economically feasible without the use of extensive automation.[citation needed]

[edit] Rotation

Venus rotates once every 243 days – by far the slowest rotation period of any of the major planets. A Venusian sidereal day thus lasts more than a Venusian year (243 versus 224.7 Earth days). However, the length of a solar day on Venus is significantly shorter than the sidereal day; to an observer on the surface of Venus the time from one sunrise to the next would be 116.75 days. Nevertheless, Venus's extremely slow rotation rate would result in extremely long days and nights, which could prove difficult for most known Earth species of plants and animals to adapt to. The slow rotation also likely accounts for the lack of a significant magnetic field.

One proposal is a system of orbiting solar mirrors which might be used to provide sunlight to the night side of Venus and possibly shade to the day side surface. In addition to his suggestion of slatted system of mirrors near the L1 point between Venus and the Sun, Paul Birch has proposed a rotating soletta mirror in a polar orbit, which would produce a 24-hour light cycle.[3]

Speeding up Venus's rotation would require many orders of magnitude greater amounts of energy than construction of orbiting solar mirrors, or even than the removal of Venus's atmosphere. Recent scientific research suggests that close fly-bys of asteroids or cometary bodies larger than 60 miles across could be used to move a planet in its orbit, or increase the speed of rotation.[9] G. David Nordley has suggested, in fiction[10], that Venus might be spun-up to a day-length of 30 Earth-days by exporting the atmosphere of Venus into space via mass drivers. This concept was also explored more rigorously by Birch.[11]

[edit] See also

 

Terraforming of Venus

From Wikipedia, the free encyclopedia

 

Artist's conception of a terraformed Venus. The cloud formations are depicted assuming the planet's rotation has not been sped up.

[hide]This article has multiple issues. Please help improve it or discuss these issues on the talk page.

This article possibly contains original research. (June 2012)

 

This article may contain unsourced predictions, speculative material or accounts of events that might not occur. (June 2012)

 

 

The terraforming of Venus is the hypothetical process of engineering the global environment of the planet Venus in such a way as to make it suitable for human habitation. Terraforming Venus was first seriously proposed by the astronomer Carl Sagan in 1961.[1] The minimum adjustments to the existing environment of Venus to support human life would require three major changes to the planet. These three changes are closely interrelated, since Venus's extreme temperature is due to the greenhouse effectcaused by its dense carbon-dioxide atmosphere:

·         Reducing Venus's 450°C (850°F) surface temperature.

·         Eliminating most of the planet's dense 9 MPa (~90 atm) carbon dioxide atmosphere, via removal or conversion to some other form.

·         Addition of breathable oxygen to the atmosphere.

Furthermore, the following two changes would also be highly desirable:

·         Establishing a day/night light cycle shorter than Venus's extant solar day (presently 116.75 Earth days).

·         Establishing a planetary magnetic field or substitute for protection against solar and cosmic radiation.

Contents

  [hide

·         1 Solar shades

o    1.1 Space based

o    1.2 Atmospheric or surface-based

·         2 Eliminating the dense carbon dioxide atmosphere

o    2.1 Biological approaches

o    2.2 Introduction of hydrogen

o    2.3 Capture in carbonates

o    2.4 Direct liquefaction and sequestration

o    2.5 Removing atmosphere

·         3 Rotation

·         4 See also

·         5 References

·         6 External links

Solar shades[edit]

Venus receives about twice the sunlight that Earth does, which is thought to have contributed to its runaway greenhouse effect. Terraforming Venus would probably involve reducing the insolation at Venus's surface to prevent the planet from heating up again.

Space based[edit]

Solar shades could be used to reduce the total insolation received by Venus, cooling the planet somewhat.[2] A shade placed in the Sun–Venus L1Lagrangian point also serves to block the solar wind, removing the radiation exposure problem on Venus.

Construction of a suitably large solar shade is a daunting task. The size of the shade would be four times the diameter of Venus itself if at the L1 point. This size would necessitate construction in space. There would also be the difficulty of balancing a thin-film shade perpendicular to the Sun's rays at the Sun–Venus Lagrangian point with the incoming radiation pressure, which would tend to turn the shade into a huge solar sail. If the shade were left at the L1 point, the pressure would add force to the sunward side and necessitate moving the shade even closer to the Sun than the L1 point.

Modifications to the L1 solar shade design have been suggested to solve the solar-sail problem. One suggested method is to use polar orbiting, solar-synchronous mirrors that reflect light toward the back of the sunshade, from the non-sunward side of Venus. Photon pressure would push the support mirrors to an angle of 30 degrees away from the sunward side.[3]

Paul Birch proposed[4] a slatted system of mirrors near the L1 point between Venus and the Sun. The shade's panels would not be perpendicular to the sun's rays, but instead at an angle of 30 degrees, such that the reflected light would strike the next panel, negating the photon pressure. Each successive row of panels would be +/- 1 degree off the 30-degree deflection angle, causing the reflected light to be skewed 4 degrees from striking Venus.

Another possibility, suggested by Bradley C. Edwards, is to put into orbit around Venus a belt of material, blocking a portion of sunlight. Multiple thinner belts may be used, and may be composed of a thin net of fibers spaced so that certain wavelengths could not get through while using less material.[5]

Solar shades could also serve as solar power generators. Space-based solar shade techniques, and thin-film solar sails in general, are only in an early stage of development. The vast sizes require a quantity of material that is many orders of magnitude greater than any man-made object that has ever been brought into space or constructed in space.

Atmospheric or surface-based[edit]

See also: Colonization of Venus#Aerostat habitats and floating cities

Cooling could also be effected by placing reflectors in the atmosphere or on the surface. Reflective balloons floating in the upper atmosphere could create shade. The number and/or size of the balloons would necessarily be great. Geoffrey A. Landis has suggested[6] that if enough floating cities were built, they could form a solar shield around the planet, and could simultaneously be used to process the atmosphere into a more desirable form, thus combining the solar shield theory and the atmospheric processing theory with a scalable technology that would immediately provide living space in the Venusian atmosphere. If made from carbon nanotubes (recently fabricated into sheet form) or graphene (a sheet-like carbon allotrope), then the major structural materials can be produced using carbon dioxide gathered in situ from the atmosphere. The recently synthesised amorphous carbonia might prove a useful structural material if it can be quenched to STP conditions, perhaps in a mixture with regular silica glass. According to Birch's analysis such colonies and materials would provide an immediate economic return from colonizing Venus, funding further terraforming efforts.

Increasing the planet's albedo by deploying light color or reflective material on the surface could help keep the atmosphere cool. The amount would be large and would have to be put in place after the atmosphere had been modified already, since Venus's surface is currently completely shrouded by clouds.

An advantage of atmospheric and surface cooling solutions is that they take advantage of existing technology. A disadvantage is that Venus already has highly reflective clouds (giving it an albedo of 0.65), so any approach would have to significantly surpass this to make a difference.

Eliminating the dense carbon dioxide atmosphere[edit]

Biological approaches[edit]

A method proposed in 1961 by Carl Sagan involves the use of genetically engineered bacteria to fix carbon into organic forms.[1] Although this method is still commonly proposed in discussions of Venus terraforming, later discoveries showed it would not be successful.[7] The production of organic molecules from carbon dioxide requires an input of hydrogen, which on Earth is taken from its abundant supply of water but which is nearly nonexistent on Venus. Since Venus lacks a magnetic field, the upper atmosphere is exposed to direct erosion by solar wind and has lost most of its original hydrogen to space.

Furthermore, any carbon that was bound up in organic molecules would quickly be converted to carbon dioxide again by the hot surface environment. Venus would not begin to cool down until after most of the carbon dioxide has already been removed. Twenty-three years later, in Pale Blue Dot, Sagan conceded that his original proposal for terraforming would not work because the atmosphere of Venus is far denser than was known in 1961.[7]

Floating colonies[6] could gradually transform the Venusian atmosphere: for example, their reflectivity could alter the overall albedo of Venus. Colonies could also grow plant matter, if water or another source of hydrogen were imported, which would gradually sequester carbon dioxide in the air. However, it would take an enormous number of such colonies, and large quantities of introduced hydrogen, to have a significant atmospheric impact, as there is over 1.2×1020 kg of carbon in Venus's atmosphere.

Introduction of hydrogen[edit]

According to Birch,[4] bombarding Venus with hydrogen and reacting it with carbon dioxide, could produce elemental carbon (graphite) and water by theBosch reaction. It would take about 4×1019 kg of hydrogen to convert the whole Venerian atmosphere. (Loss of hydrogen due to the solar wind is unlikely to be significant on the timescale of terraforming.) Due to the relatively flat surface, this water would cover about 80% of the surface compared to 70% for Earth, even though it would amount to only roughly 10% of the water found on Earth.

The remaining atmosphere, at around 3 bars (about three times that of Earth), will mainly be composed of nitrogen, some of which will dissolve into the new oceans of water, reducing atmospheric pressure further, in accordance with Henry's law.

Capture in carbonates[edit]

Bombardment of Venus with refined magnesium and calcium could sequester carbon dioxide in the form of calcium and magnesium carbonates. About 8×1020 kg of calcium or 5×1020 kg of magnesium would be required, which would entail a great deal of mining and mineral refining.[8] 8×1020 kg is a few times the mass of the asteroid 4 Vesta (more than 500 kilometres (310 mi) in diameter).

Modelling by Mark Bullock[9] of Venus's atmospheric evolution suggests that existing surface minerals, particularly calcium and magnesium oxides, could serve as a sink of carbon dioxide and sulphur dioxide. If these could be exposed to the atmosphere then the planet would cool and its atmospheric pressure decline somewhat. One of the possible end states modelled by Bullock was a 43 bar atmosphere and 400 K surface temperature.

Direct liquefaction and sequestration[edit]

Birch's proposal[4] involves using a solar shade to cool Venus down sufficiently to permit liquefaction, from a temperature less than 304.18 K and partial pressures of CO2 down to 73.8 bar (carbon dioxide's critical point) and then down to 5.185 bar and 216.85 K (carbon dioxide's triple point). Below that temperature, freezing of atmospheric carbon dioxide into dry ice will cause it to deposit onto the surface, after which the frozen CO2 would be buried and maintained in that condition by pressure, or shipped off-world. After this process was complete, the shades could be removed or solettas added, allowing the planet to partially warm again to temperatures comfortable for Earth life. A source of hydrogen or water would still be needed, and some of the remaining 3.5 bar of atmospheric nitrogen would need to be fixed into the soil. Birch suggests disrupting an ice-moon of Saturn and bombarding Venus with its fragments to provide perhaps an average depth of 100 meters of water over the whole planet.

Removing atmosphere[edit]

The removal of Venus's atmosphere could be attempted by a variety of methods, possibly in combination. Directly lifting atmospheric gas from Venus into space would probably prove difficult. Venus has sufficiently high escape velocity to make blasting it away with asteroid impacts impractical. Pollack andSagan calculated in 1993[7] that an impactor of 700 km diameter striking Venus at greater than 20 km/s, would eject all the atmosphere above the horizon as seen from the point of impact, but since this is less than a thousandth of the total atmosphere and there would be diminishing returns as the atmosphere's density decreases, a very great number of such giant impactors would be required. Landis calculated[10] that to lower the pressure from 92 bar to 1 bar would require a minimum of 2000 impacts, even if the efficiency of atmosphere removal was perfect. Smaller objects would not work either, as more would be required. The violence of the bombardment could well result in significant outgassing that would replace removed atmosphere. Most of the ejected atmosphere would go into solar orbit near Venus, and, without further intervention, could be captured by Venus's gravitational field and become part of the atmosphere once again.

Removal of atmospheric gas in a more controlled manner could also prove difficult. Venus's extremely slow rotation means that space elevators would be very difficult to construct as the planet's geostationary orbit lies an impractical distance above the surface; and the very thick atmosphere to be removed makes mass drivers useless for removing payloads from the planet's surface. Possible workarounds include placing mass drivers on high-altitude balloons or balloon-supported towers extending above the bulk of the atmosphere, using space fountains, or rotovators.

In addition, if the density of the atmosphere (and corresponding greenhouse effect) were dramatically reduced, the surface temperature (now effectively constant) would probably vary widely between dayside and nightside. Another side effect to atmospheric density reduction could be the creation of zones of dramatic weather activity or storms at the terminator as large volumes of atmosphere underwent rapid heating or cooling.

Rotation[edit]

Venus rotates once every 243 days – by far the slowest rotation period of any of the major planets. A Venerian sidereal day thus lasts more than a Venerian year (243 versus 224.7 Earth days). However, the length of a solar day on Venus is significantly shorter than the sidereal day; to an observer on the surface of Venus the time from one sunrise to the next would be 116.75 days. Nevertheless, Venus's extremely slow rotation rate would result in extremely long days and nights, which could prove difficult for most known Earth species of plants and animals to adapt to. The slow rotation also probably accounts for the lack of a significant magnetic field.

One proposal to compensate for the rotation rate is a system of orbiting solar mirrors which might be used to provide sunlight to the night side of Venus and possibly shade to the day side surface. In addition to his suggestion of slatted system of mirrors near the L1 point between Venus and the Sun, Paul Birchhas proposed a rotating soletta mirror in a polar orbit, which would produce a 24-hour light cycle.[4]

Increasing the speed of Venus's rotation would require energy many orders of magnitude greater than the construction of orbiting solar mirrors, or even than the removal of Venus's atmosphere. Recent scientific research suggests that close fly-bys of asteroids or cometary bodies larger than 60 miles across could be used to move a planet in its orbit, or increase the speed of rotation.[11] G. David Nordley has suggested, in fiction,[12] that Venus might be spun-up to a day-length of 30 Earth-days by exporting the atmosphere of Venus into space via mass drivers. A proposal by Birch involves the use of dynamic compression members to transfer energy and momentum via high velocity mass-streams to a band around the equator of Venus. He calculated that this would give Venus a day of 24 hours in 30 years.[13]

See also

 

  • Like 2

Partajează acest post


Link spre post
Distribuie pe alte site-uri

Cul.

Între timp ne plimbăm cu mașină dizel, mâncăm plastic, tăiem toți copacii și dăm foc la un sac cu pene de gâscă (ultima îmi aparține, dar încă nu am comis-o, urmește).

 

 

  • Like 1

Partajează acest post


Link spre post
Distribuie pe alte site-uri

Creează un cont sau autentifică-te pentru a adăuga comentariu

Trebuie să fi un membru pentru a putea lăsa un comentariu.

Creează un cont

Înregistrează-te pentru un nou cont în comunitatea nostră. Este simplu!

Înregistrează un nou cont

Autentificare

Ai deja un cont? Autentifică-te aici.

Autentifică-te acum

×