Jump to content
Forum Roportal
Sign in to follow this  

VENUS - o nouă lume pentru umanitate - etapele terraformării

Recommended Posts

Teraformarea planetei Venus se poate realiza.

In timp ce se formează scutul supra-atmosferic din micro-bule helionice umplute cu hidrogen, temperatura atmosferei va scadea gradual.

In prima faza calculand cat oxigen va ramane in atmosfera finala se va aduce hidrogen  in atmosfera venusiană s-au se va folosi apa atmosferică pentru a reduce dioxidul de carbon si a elibera oxigenul complementar, dar mai degrabă am utiliza foraje subvenusiene in apele termale si freatice spre bazele submarine venusiene sau subterane unde vom avea reactoare nucleare ce vor scinda apa in oxigen si hidrogen, iar efectul ar fi dublu, practic oxigenul se va acumula in atmosfera, iar hidrogenul va reactiona cu CO2 rezultand carbon si apa.

            Niste bombe atomice ecologice transatmosferice ar scinda direct CO2 venusian in cantitati uriase de carbon si oxigen, probabil ar fi cea mai rapida si la indemana solutie. In final Venus va fi o planeta albastră cu oceane intinse dar putin adanci cca. 1 metru adancime.

            Asadar avem nevoie in primul rand de rachete nucleare transhidrogen   D-T-H cu initiere ecologică curată si ieftina.

Ar fi necesara convertirea a mai putin de 10% din atmosfera de CO2, mai exact cca. 2 % din total, adică echivalentul cantitatii de oxigen din atmosfera terestra la presiunea de 1 atmosferă (in timp ce CO2 in atmosfera terestra are o concentratie extrem de mica mai degraba simbolica cca. 0,04%,).

Azotul venusian este 3,5%, ceea ce ar echivala cu 300 % in atmosfera terestră, adică azot 100% la 1 atmosferă, dar ar fi azot 100% la 3 atmosfere de azot echivalent in atmosfera terestră.

In realitate probabil azotul venusian se gaseste cam in aceasi cantitate ca in atmosfera Pamantului, deci cu el nu am avea prea multa bataie de cap.

In final temperatura va fi putin mai mare decat pe Pamant ceea ce va face ca la polii planetei sa fie temperaturi constante de 27-35C si ziua continua tot timpul si tot aici va ploua, ceea ce va face ca dioxidul de carbon sa se fixeze in marile putin adanci proaspat formate.

De asemenea niste bombe atomice ecologice vor fi detonate in zonele bogate in calciu pentru eliberarea de pulbere calcica pentru formarea carbonatului de calciu in contact cu atmosfera venusiana inca fierbinte pe la 100-200 C.

Azotul venusian pare a se gasi in aceeasi concentratie ca si pe Pamant, doar oxigenul va trebui eliberat din CO2.

Asadar asteroizi si comete deturnate pe Venus care vor aduce calciu si metale ce vor reactiona cu CO2 reducand atmosfera la carbonati solizi si stabili, plus bombe nucleare ecologice care vor reactiva multi vulcani.

Asteroizii ce vor reusi sa atinga solul venusian si macar printr-o unda de soc vor putea ridica praf si sol venusian in atmosfera intregii planete, din nou rezultand carbonati.

Calcium oxide is usually made by the thermal decomposition of materials, such as limestone or seashells, that contain calcium carbonate (CaCO3; mineral calcite) in a lime kiln.

This is accomplished by heating the material to above 825 °C (1,517 °F),[6] a process called calcination or lime-burning, to liberate a molecule of carbon dioxide (CO2), leaving quicklime.

CaCO3(s) → CaO(s) + CO2(g)

The quicklime is not stable and, when cooled, will spontaneously react with CO2 from the air until, after enough time, it will be completely converted back to calcium carbonate unless slaked with water to set as lime plaster or lime mortar.


Asadar prin racirea atmosferei venusiene sub +178 C, suprafata de CaO, va reactiona imediat cu CO2 atmosferic generand calcar stabil.

In acest sens vom utiliza asteroizi si bombe nucleare ecologice, dar mai intai un scut criogenic planetar din microsfere helionice umplute cu hidrogen sau heliu.

Deci am putea scapa de CO2 venusian, mai dificil ar fi sa regeneram oxigenul venusian din CO2 prin producerea de hidrogen din apele freatice venusiene cat si prin  https://en.wikipedia.org/wiki/Water_splitting#Thermal_decomposition_of_water

At the very high temperature of 3000 °C more than half of the water molecules are decomposed, but at ambient temperatures only one molecule in 100 trillion dissociates by the effect of heat.

Some prototype Generation IV reactors, such as the High-temperature engineering test reactor, operate at 850 to 1000 degrees Celsius, considerably hotter than existing commercial nuclear power plants. General Atomics predicts that hydrogen produced in a High Temperature Gas Cooled Reactor (HTGR) would cost $1.53/kg. In 2003, steam reforming of natural gas yielded hydrogen at $1.40/kg. At 2005 gas prices, hydrogen cost $2.70/kg.[citation needed] Hence, just within the United States, a savings of tens of billions of dollars per year is possible with a nuclear-powered supply. Much of this savings would translate into reduced oil and natural gas imports.

One side benefit of a nuclear reactor that produces both electricity and hydrogen is that it can shift production between the two. For instance, the plant might produce electricity during the day and hydrogen at night, matching its electrical generation profile to the daily variation in demand. If the hydrogen can be produced economically, this scheme would compete favorably with existing grid energy storage schemes. What is more, there is sufficient hydrogen demand in the United States that all daily peak generation could be handled by such plants.[16]


Another possible source of hydrogen could be extracting it from possible reservoirs in the core of the planet itself.

According to some researchers the Earth's core might hold large quantities of hydrogen.[20] Since the inner structure of Earth and Venus are generally believed to be somewhat similar, the same might be true for the core of Venus.

Iron aerosol in the atmosphere will also be required for the reaction to work, and iron can come from Mercury, asteroids, or the Moon. (Loss of hydrogen due to the solar wind is unlikely to be significant on the timescale of terraforming.)

Due to the relatively flat surface, this water would cover about 80% of the surface, compared to 70% for Earth, even though it would amount to only roughly 10% of the water found on Earth.[citation needed]

The remaining atmosphere, at around 3 bars (about three times that of Earth), would mainly be composed of nitrogen, some of which will dissolve into the new oceans of water, reducing atmospheric pressure further, in accordance with Henry's law.



Certain qualities, despite not being what we’re used to, would still fall well within human limits for livability. For example, we don’t have to live in a 24 hour day/night cycle. We also don’t need to live on the surface of a planet.

Venus has a lot of good things going for it making it a better prospect than Mars. It’s closer than Mars (4 month trip vs 6 month trip), has a similar gravity (0.9g vs 0.38g), has a longer window of time to potentially launch (every 19 months vs 26 months), has an atmosphere and an induced magnetosphere from it’s ionosphere. Here’s the real kicker: 50 to 55 kilometers above the surface of Venus, the planet has a similar pressure and temperature to Earth. In fact, Venus might be one of the only places in the entire solar system where you can find a similar gravity, pressure and temperature as Earth. The problem is that it’s high up in the clouds.

But here’s where things get interesting: because Venus has an atmosphere of 95% CO2, and the density of pure CO2 is 1.96g/L as opposed to Earth air density of 1.25g/L. This means that a spacecraft filled with normal air would have an effect similar to helium on Venus.

A properly designed spacecraft could float on top of the clouds. Think of it as a flying submarine. In addition, there wouldn’t need to be any concern for explosive decompression as the ambient pressure is equal to the internal pressure. Any leak in the craft would be a slow exchange of gases.

Currently there’s a bit of “surfacism” in the scientific community. Humans are so used to living on the ground that any idea to the contrary is greeted with skepticism. Since we can’t live on the ground on Venus, we can’t live there at all.

It would be far easier to set up a colony in the upper atmosphere of Venus than it would be to colonize Mars.

Because the colony is in the upper atmosphere, it takes less energy for an orbital insertion into the gravity well. The atmosphere allows for quicker aerobraking and the deployment of spacecraft. This is important because it means that less energy is needed to escape from the gravity well of the planet, thus enabling return trips.

The window of launch (every 19 months) and the length of the voyage (4 months) is also lessened, this means that supply ships can come and go faster and more frequently, ensuring constant support for the initial colonists.

On Venus, there is a minimized risk of radiation due to the weak induced ionosphere. This is vastly different than Mars which has no magnetosphere.

Venus also has two times the solar insolation as Earth which means that any solar panels used on Venus would have a much better efficiency. In addition, the reflective cloud cover allows solar panels to be placed on any surface of the craft and still receive a similar amount of solar energy.

There are a number of problems with Venus that may actually provide an advantage to living on the planet.

First, Venus rotates in retrograde. It is thought that a catastrophic collision caused Venus to flip its rotation. The planet spins clockwise very slowly, once every 243 Earth days. It’s day is longer than it’s year (116 days).

This could actually be an advantage to Venus. The slow rotation means that a powered aircraft could stay in constant sunlight with very minimal effort. In addition, this allows for plants to grow with maximum sunlight. The CO2 atmosphere would also help immensely with plant growth.

Secondly, Venus has wind speeds of over 200 miles/hour in the upper atmosphere. However, this is limited to the equator; close to the poles and at greater than 55 degrees in latitude, the wind speed decreases to less than 22 miles/hour above the cloud cover, a much more manageable amount. you would only have to fly at the same speed as a slow-moving car to stay in the same location. In addition, in the polar regions the temperature is much more stable with swings of less than 27 F (15 C), well within Earth-normal.

Lastly, the problem that Venus has is the lack of water and the abundance of sulfuric acid. Although difficult to deal with, this is not an insurmountable problem. The corrosive acid could be an essential source of hydrogen ions in order to make water, and with the proper coatings of PIBO, surfaces can be protected against the acidic clouds.

Due to the high density of CO2, properly attired colonists could fly around the clouds of Venus with relative ease. Also, the colony could be a good testing ground for carbon-fixing technology that would have the effect of reversing global warming on Earth.

Certain microorganisms would do incredibly well in the Venusian atmosphere. Geobacter sulfuredducens is a microbe that reduces sulfur in order to generate electricity. Modified geobacter could generate the constituent components of liquid water while also producing electricity for the colony.

Additionally the carbon source in the atmosphere makes a perfect substrate for the growth of carbon-based structures. Mycological growth could be tailored to build constantly expanding, lightweight platforms that support the expansion of Venusian colonies.






  • Like 1

Share this post

Link to post
Share on other sites

Ideea care se ridica este care mod va fi abordat in functie de eficienta.

Cel mai simplu ar fi  congelarea planetei Venus la -50C, prin umbrirea suprafetei din atmosfera inalta printr-un gaz format din micro-sfere cu flotabilitate atmosferica opace argintii, am obtine o scadere treptata a temperaturii si in acelasi timp lichefierea atmosferei, iar in cele din urma solidificarea oceanelor de dioxid de carbon lichid cat si a restului atmosferei de dioxid de carbon.

Totusi noi dorim sa transformam Venus intr-o lume locuibila cum este Pamantul si prin urmare vom urma o cale mai complicata si anume transformarea intregii atmosfere venusiene de dioxid de carbon prin fixarea acesteia in roci sub forma carbonatilor de magneziu, calciu, samd.

Pentru a obtine asa ceva este nevoie de spargerea crustei planetare in cateva locuri prin proiectile relativistice accelerate in tunuri EM Mag-Levi de pe orbita lui Venus, fiind totodata si purtatori de focoase termo-nucleare.

Procesele super-vulcanice vor genera cantitati uriase de vapori, dar si cenusa vulcanica care va captura dioxidul de carbon in roci.

In functie de cantitatea de apa subterana eliberata prin procesele hiper-vulcanice se va calcula eficienta viitoarelor oceane in a captura restul dioxidului de carbon din atmosfera venusiana.

Procesele piroclastice super-vulcanice cat si procesele termonucleare vor genera scindarea dioxidului de carbon in grafit si oxigen.

Apa va reactiona de asemenea cu dioxidul de carbon rezultand oxigen si metan, iar acidul sulfuric din atmosfera venusiana va reactiona si el cu dioxidul de carbon reezultand oxigen, apa si carbonat de sulf.


Un surplus de apa venusiana ar putea proveni din uriasele rezerve de apa-freatica subterana de adancime la fel ca si pe Pamant, iar proiectilele ultra-rapide ar putea elibera si aceste rezerve spre suprafata planetei.

Prin racirea atmosferei venusiene sub +178 C, suprafata de CaO, va reactiona imediat cu CO2 atmosferic generand calcar stabil.

Se pare ca dioxidul de carbon din atmosfera venusiana a aparut din rocile carbonate de la sol pe cand Venus era si mai fierbinte in jur de + 825 C pe cand avea un efect de sera si mai pronuntat probabil pe cand avea inca multi aburi de apa in atmosfera, iar pe masura ce aburii de apa au fost scindati in atmosfera inalta in oxigen si hidrogen sub efectul radiatiilor solare iar in special hidrogenul s-a pierdut in cosmos ramanand oxigen cam cat exista in atmosfera Pamantului la presiunea de 1 bar presiune atmosferica.

Asadar daca vom umbrii Venus prin acel gaz din microsfere cu flotabilitate atmosferica, pe cand temperatura va fi scazut pe la sub + 178 C, dioxidul de carbon atmosferic va reactiona cu solul de oxid de calcar adica cu piatra de var formand din nou carbonati de calciu.

Prin bombardarea suprafetei, mai ales a zonelor bogate in piatra de var, vom elibera in atmosfera suportul necesar absorbtiei dioxidului de carbon.

In final vom obtine o atmosfera precum cea a Pamantului, iar apele subterane eliberate la suprafata si supervulcanii reactivati vor genera cantitati uriase de apa care se vor condensa in oceane intinse care la randul lor vor absorbi restul de dioxid de carbon ramas in atmosfera venusiana cat si cei 3 bari de azot ramasi in atmosfera lui Venus.

Edited by zodiak
  • Like 1

Share this post

Link to post
Share on other sites

In etapa descrisa mai sus chiar daca conditiile nu ar permite o colonizare directa in mediul natural, oamenii ar putea vietui in orase dezvoltate sub domuri gonflabile cu atmosfera proprie. 

In acest scop ar fi suficient o planeta Venus racita la - 50C si unde toata atmosfera s-ar condensa in zapada carbonica ramanand doar cca. 1-3 atmosfere de nitrogen si parti mici de alte gaze. 

Mercur, Luna, Marte, Ceres, Europa, samd sunt planete care nu ar avea nevoie de interventii majore decat un mic scut generator de efect de sera si sau magnetic. 


  • Like 1

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this